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Abstract

The steady-state conduction of heat through the solid phase of a porous material consisting of an assembly of simple cubic packed
uniform spheres at low liquid contents with heat conducted from one sphere to the next through annular liquid lenses around the points
of contact, is analysed in terms of Legendre polynomials assuming the liquid bridges to behave as isothermal hemispheres around point
sources and sinks. The conductance of a sphere is approximately the same when the surface area of the hemisphere is the same as that of
the liquid lens assumed to be an isothermal disc for which numerical results of isotherms are compared with the analytical results.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat transfer in porous materials occurs both by con-
duction through the constituting solid, liquid and gaseous
phases and by convection with the moving liquid and gas
in the pore network. In unsaturated materials it is also
affected by distillation between liquid islands where evapo-
risation and condensation occur [1]. In this paper we focus
on the conduction of heat through the solid particles at low
liquid contents, considering the three-dimensional flow
between isolated lenses of liquid in the interstices. We con-
sider steady conduction only that depends on the arrange-
ment of solid particles and on the proportions of liquid and
gas that fill the void space. It decreases with the liquid con-
tent since the conductivity of gases is generally negligible
compared with that of liquids and solids.

The process has been studied extensively in work on the
thermal behaviour of soils where effective conductivities of
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the multiphase system occurring in wet soils are used to
describe the macroscopic flow. Hillel [2, p. 286] states that
‘‘the problem of expressing the overall thermal conductiv-
ity of a soil as a function of the specific conductivities
and volume fractions of the soil’s constituents is very intri-
cate, as it involves the internal geometry of soil structure
and the transmission of heat from particle to particle and
from phase to phase”. The detailed reproduction of the
intricacy is commonly obviated in effective medium theo-
ries that consider the effective conductivity ke of the bulk
material. These originate from the Maxwell [3] and Brugg-
eman [4] approach that considers a single ellipsoidal parti-
cle embedded in a homogeneous medium. Mathematically
the problem reduces to the three-dimensional refraction of
an external field at the ellipsoid surface where the thermal
conductivity changes from that of the medium to that of
the particle. In soil physics, the effective conductivities as
considered by de Vries [5,6] were developed from Burger’s
[7] equation for the electrical conductivity of a porous
material that follows Maxwell’s conceptualisation.

Models based on the Maxwell–Bruggeman approach
work well when the liquid content is large so that the solid
phase appears to be embedded in a matrix of the liquid
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Nomenclature

a radius of sphere (m)
G conductance (W K�1)
~i external (effective) thermal gradient in the por-

ous medium (K m�1)
k thermal conductivity of solid material

(W m�1 K�1)
ke effective conductivity of the packing

(W m�1 K�1)
q strength of point sources and sinks (W)
Q total heat conducted through one sphere (W)
(r,h,x) spherical coordinates (m,–,–)
rc radius of isothermal caps (m)
rd radius of disc source and sink (m)

rhs radius of hemispherical source and sink (m)
S surface area of an arbitrary isotherm (m2)
t fictitious time in particle tracking (s)
tf marching time in the Runge–Kutta algorithm (s)
T temperature within sphere (K)
T0 temperature of hemispherical sources modelling

water lenses (K)
Ti induced temperature (K)
Tsi,Tso temperature components due to point singulari-

ties (K)
V volume confined by an arbitrary isotherm and

adiabatic plane (m3)
(x,y,z) Cartesian coordinates (m)
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phase. However, this is not the case in unsaturated soils
where there is no liquid continuity so that heat flow is chan-
nelled through areas around contacting particles. Thus the
de Vries analytical equation overestimates the thermal con-
ductivity at low liquid contents while empirical formulae
that give good estimates of the thermal conductivity at large
liquid contents fail as the liquid content approaches zero.
Chudnovskii [8] gives a comprehensive review and numer-
ous experimental data for heat conduction at low water
contents in soils and porous materials of different density,
texture and mineralogy of solid particles.

As the liquid content in a porous material decreases, a
liquid that wets the surface of the solid matrix withdraws
into the interstices at the touching points of particles form-
ing the porous material, and conduction takes place only
through the solid particles between thermal contacts if
the conductivity of the gaseous phase is small and can be
neglected. The heat flow within the solid particles is obvi-
ously three-dimensional and this is not considered in the
simple macroscopic one-dimensional theories, although it
has been qualitatively depicted in the patterns of heat flow
converging to and diverging from the contact zones in adja-
cent particles [8]. A more rigorous approach to the conduc-
tion problem must include this three-dimensional flow
between the contact areas of neighbouring particles.

In the analysis of thermal contact problems [9], although
the temperature field near the contact is not uniform, the
two regions are considered to be semi-infinite and either
the temperature is postulated to be uniform at infinity
[10,11] or the thermal gradient to be constant [12]. The spa-
tial behaviour of temperature results from this far-field
condition and the conditions at the contacts which are con-
sidered to behave as point or line sinks or sources. These
semi-unbounded regions differ from a finite particle in a
porous material in which these conditions do not apply.

Modelling porous materials as an assembly of spheres
has been used extensively in work on heat transport in such
materials. Gemant [13] considered water located in lenses
at the points of contact, but assumed one-dimensional flow
through the sphere in calculating the soil’s thermal conduc-
tivity. Gusarov et al. [14] and Siu and Lee [15] considered
thermal contacts as either polar caps or necks connecting
the neighbouring spheres. Their contiguous spheres consti-
tuted the elementary cells of a lattice forming the represen-
tative elementary volume for the macroscopic behaviour.
Chen and Tien [16] assumed isotherms are normal to the
direction of the macroscopic heat flow and obtained a for-
mula for the conductance of a spherical packing. If the
liquid is nonwetting, then droplets of liquid form in the
porous matrix and heat flows through thermal contacts
occurring as disc-shaped quasi-spherical zones of liquid
between solid particles [18].

In order to investigate further the conduction of heat at
small liquid contents in porous materials, we first consider
the simplest system of an assembly of simple cubic open-
packed spheres and consider the flow between the liquid
lenses around the contact points assumed to be isothermal
zones. It has not been possible to find an analytical solution
to Laplace’s equation that describes the flow within the
spheres that was solved by Youngs [17] numerically for
the analogous problem of water flow through porous aggre-
gates when the larger pores surrounding the aggregates are
full of air and the fluid flow is funnelled through small water
lenses around the contact points. However, if we consider
the points of contact to behave as point sources and sinks
as was done by Avkhadiev and Kacimov [19], which is
equivalent to assuming the areas of contact are approxi-
mately hemispherical, solutions are possible. In this paper
we present this solution that describes the heat flow within
the sphere and provides an insight into the microscopic
behaviour in the solid phase. We also consider the situation
of flow in a close-packed assembly of uniform spheres.

2. Open-packed uniform spheres

We consider the conduction of heat through an assem-
bly of open-packed spheres of radius a and uniform con-
ductivity k arranged as a lattice in a cubic packing
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Fig. 1. Simple cubic open packing of spheres: (a) cross-section of an assembly and (b) of an elementary cell.
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(Fig. 1a). An elementary cell of the lattice has three planes
of symmetry and a coordination number of six so that each
sphere touches six neighbours. The porosity of this packing
is 1 � p/6. In the elementary cell of the lattice, heat is con-
ducted from one sphere to another through contact zones
AMB and CND shown in the plan view in Fig. 1b around
the poles M, N, and at four positions P, S and two other
contact points not shown around the equator. We neglect
radiation heat transfer and the heat conduction from the
solid surface to and from the gas phase because of the lat-
ter’s small conductivity relative to k, and assume there is no
convective flow of liquid and gas and no heat exchange due
to evaporation and condensation from the liquid islands
that form the contact zones.

In the simplest case the external temperature gradient i is
perpendicular to one of the planes of symmetry (plane xOy

in Fig. 1a) so that macroscopically heat flows parallel to
the z-axis. Conduction of heat to or from the sphere MPNS
is provided by the two spheres stacked just above and
below through the zones of contact near the bottom M
and top N. The four other neighboring spheres in the hor-
izontal plane are thermally neutral.

We assume that zones of particle contact can be
regarded as small isothermal caps of a radius rc (rc� a)
as shown in Fig. 1b that depicts the xOz cross-section of
the sphere. With temperatures measured relative to the
average temperature of the sphere, the cap AMB is at tem-
perature T = T0 and the cap CND is at temperature �T0.
Due to symmetry the equatorial plane z = 0 is also an iso-
therm at temperature T = 0. The temperature distribution
within the sphere is given by solutions of Laplace’s equa-
tion subject to the given boundary conditions.

If we assume that the porous material behaves as a con-
tinuum consisting of solid spheres and interstitial space,
then the one-dimensional macroscopic heat flux I is given
by Fourier’s law:

I ¼ �ke

dT
dz
¼ �kei ð1Þ

where ke is the apparent macroscopic conductivity of the
two-phase system. The apparent temperature gradient
T0/a over one particle is trivially expressed through the
macroscopic thermal gradient i. Microscopically we are
concerned with the temperature distribution within individ-
ual spheres.

3. Weber disc limit

For very large sphere radii and small cap radii the flow
between the poles of a sphere in an open-packed assembly
approaches that of Weber’s classical problem of the field
due to an electrified disc in an infinite medium. Then the
temperature field around a disc of radius rd is given by
Carslaw and Jaeger [20]:

T ¼ 2T 0

p

Z a

0

e�kzJ 0ðkrÞ sinðkaÞ dk
k

¼ 2T 0

p
arcsin

2rdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � rdÞ2 þ z2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ rdÞ2 þ z2

q ð2Þ

in cylindrical coordinates, where J0 is the Bessel function of
the first kind and T = T0 on the disc’s surface r < rd, z = 0,
oT/oz = 0 at r > rd, z = 0, and T ? 0 at r, z ?1. In the
analogous groundwater situation it has been shown that
equipotentials (analogous to the isotherms) are spheroids
and stream surfaces are hyperboloids [21]. The total heat
Q conducted from the disc is given by

Q ¼ 4krdT 0 ð3Þ
Scaling arguments were used in [17] to show that (3)

describes the flow between small polar caps of radius rc

(�rd) in spheres of any radius a. The conductance G of
any sphere of radius a is thus Q/2T0 = 2krc, giving the
effective conductivity of the assembly of open-packed
spheres as

ke ¼ krc=a ð4Þ
4. Point source and sink solution

In order to obtain an analytical closed-form solution to
Laplace’s equation
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DT ¼ 0 ð5Þ

for the temperature distribution within a sphere of radius a

in an open-packed assembly, we assume flow from a point
source of strength q located at point M, z = �a, x = 0,
y = 0 to a sink of strength �q at N, z = a, x = 0, y = 0
(Fig. 1b). On the surface of the sphere

oT
or
¼ 0 ð6Þ

at r = a except at points M and N. The polar sources and
sinks around M and N coincide with the isotherms

T ¼ �T 0 ð7Þ

and become practically hemispherical in the vicinity of M
and N. The harmonic function T can be represented as
the sum

T ¼ T so þ T si þ T i ð8Þ
where Tso and Tsi are the temperature fields generated by
the source and sink. These harmonic functions using the
dimensionless variables (X,Y,Z,R) = (x,y,z, r)/a are [21]:

T so ¼
q

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ þ 1Þ2 þ X 2 þ Y 2

q ;

T si ¼ �
q

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ � 1Þ2 þ X 2 þ Y 2

q ð9Þ

or in spherical coordinates

T so ¼
q

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ 1þ 2R cos h
p ;

T si ¼ �
q

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ 1� 2R cos h
p ð10Þ

The third function Ti in (8) is the induced temperature,
which is also harmonic and obtained from the no-flux
boundary condition on the sphere’s surface

oT i

oR
¼ � oT so

oR
� oT si

oR
at R ¼ 1 ð11Þ

We search this function in the general form as a multipolar
series expansion [22]

T i ¼
Xn¼1
n¼0

bnRnP nðcos hÞ ð12Þ

where Pn are Legendre polynomials and bn are expansion
coefficients. These coefficients are found by differentiating
(10) and (12) and using (11) yielding

Xn¼1
n¼0

nbnP nðcos hÞ ¼ q

8
ffiffiffi
2
p

pka

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos h
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos h
p

� �

ð13Þ

The coefficients bn are then found from formula (4.7.2) in
[23] by expanding the right hand side of (13) into the
Legendre polynomial series, giving
bn ¼
ð2nþ 1Þq
16p

ffiffiffi
2
p

nka

Z p

0

P nðcos hÞ sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos h
p dh

�

�
Z p

0

P nðcos hÞ sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos h
p dh

�
ð14Þ

From formula 2.7.11 in [22] the first integral in (14) is equal
to 2

ffiffiffi
2
p

n=ð2n� 1Þð2nþ 1Þ, and since Pn(x) = (�1)nPn(�x)
the second integral is equal to the first multiplied by
(�1)n, so that

b0 ¼ b2 ¼ b4 ¼ � � � ¼ 0; b2n�1 ¼ �
q

4pð2n� 1Þka
;

n ¼ 1; 2; 3; . . . ð15Þ

Using these values of bn, Ti can be calculated from (12)
and the distribution of T obtained from (8) with Tso and Tsi

given by (10). Alternatively, using the Mehler–Dirichlet
integral representation for the Legendre polynomials (for-
mula (4.4.4) in [22]) gives

T i ¼�
ffiffiffi
2
p

q
4p2ka

Z h

0

cosðw=2Þ
X1
n¼1

R2n�1 cosð2n� 1Þw
2n� 1

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosw� cosh

p
"

�
Z h

0

sinðw=2Þ
X1
n¼1

R2n�1 sinð2n� 1Þw
2n� 1

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosw� cosh

p
#
ð16Þ

The second integral of (16) can be summed according to
the first formula 5.4.9.16 in [23]. Unfortunately, we found
the second formula 5.4.9.16 in [23] for the first integral to
be incorrect so we used Eq. (1.448.4) in [24]. Finally, the
induced temperature is

T i ¼�
ffiffiffi
2
p

q
16p2ka

�
Z h

0

cosðw=2Þ log½ð1þ2RcoswþR2Þ=ð1�2RcoswþR2Þ�dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosw� cosh

p
"

�
Z h

0

2sinðw=2Þarctan½ð2RsinwÞ=ð1�R2Þ�dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosw� cosh

p
#

ð17Þ

Fig. 2 shows a plot of the isotherms in the sphere calculated
for q/ka = 1.

The total heat being conducted through the sphere is

Q ¼ �
Z 2p

0

Z 1

0

oT
oZ

� �
z¼0

qdqdx ð18Þ

where (oT/oZ)z=0 is the equatorial value in the plane Z = 0
(h = p/2). Differentiating (8) and integrating (18) we obtain

Q ¼ q 1�
ffiffiffi
2
p

2
þ
X1
n¼0

P 2nð0Þ
4nþ 4

" #
¼ 0:5q ð19Þ

as it should be.
The isotherms are the same as if they were substituted by

surfaces maintained at the same uniform temperature.
Near the poles they become approximately hemispherical
with a radius rhs(T) = aRhs(T) = ahT,1 where hT,1 is the
value of h where the temperature is T on the surface
R = 1. The conductance G of the sphere between two such
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isothermal surfaces maintained at T0 and �T0 is Q/2T0.
The effective conductivity of an assembly of such open-
packed spheres is G(rhs)/2a.

Streamlines, which are a most important part of the
solutions of the analogous problems of water flow in soils
and liquid flow in porous materials in general, are not often
derived in heat flow problems. Nevertheless, in the thermal
situation these curves provide a good insight into the fun-
nelling features around thermal contact zones and are often
shown qualitatively (see, for example, [8–10,12]). These can
be plotted in a plane (q,z) based on the known particle
tracking algorithm, which follows from the solution of
the system of ordinary differential equations

z0ðtÞ ¼ vzðq; zÞ; q0ðtÞ ¼ vqðq; zÞ ð20Þ
In (20) we follow Fourier and treat conduction as if it

were a phenomenon of continuous flow of an impondera-
ble ‘‘fluid” without regard to the underlying microstructure
of the solid phase continuum. Correspondingly, the ther-
mal gradient components vz = �koT/oz, vq = �koT/oq in
(20) are related to a fictitious ‘‘fluid” particle with Lagrang-
ian coordinates z, q. The particle is kinematically advected
in the sphere with a fictitious ‘‘time” t along a fictitious
‘‘streamline” (which in electrostatics Faraday called a
‘‘curved line of inductive action” and Lord Kelvin called
it a ‘‘force line”). In seepage problems [21] the movement
of fluid particles is real and ~v is divided by porosity to
arrive at the linear average velocity.

The derivatives in (20) are calculated routinely by com-
puter packages, for example by D of Mathematica. Then
(20) is solved by NDSolve as the Cauchy problem with ini-
tial values z0, q0 with time marching, 0 < t < tf where tf is
the limit when a marked particle reaches the sink at point
N in Fig. 1. Curves a–d in Fig. 2 show the streamlines orig-
inating from the isotherm T = 1.0 and tracked up to
t = 1.4, illustrating the greater distance traversed in a given
time by particles in the centre of the sphere compared to
those near the circumference.

5. Arbitrary oriented external gradient

In the above we have considered flow caused by an
external gradient normal to the equatorial plane between
poles. The general case is when this gradient is inclined
so that flow takes place also through the points of contact
around the equator.

We consider an external gradient ~i having three arbi-
trary components ix, iy and iz. The y-component of~i can
be made zero by rotating the coordinate system xyz, so that
without any loss of generality we can assume that ix > 0,
iz > 0, iy = 0. Then two of the six contact points for each
sphere in Fig. 1 are still thermally inactive and heat flows
from two sources at points M and P with strengths qz

and qx respectively to two sinks at points N and S with
strengths �qz and �qx.

The temperature field generated by the combined action
of two source–sink pairs is the sum of the two solutions
already obtained for ix = 0 but with the difference that
for the source–sink pair at P and S we have to permute
z ? x and change h to p/2 � h. Thus we have

T ¼ T zso þ T zsi þ T zi þ T xso þ T xsi þ T xi ð21Þ

T zso ¼
qz

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ þ 1Þ2 þ X 2 þ Y 2

q ;

T zsi ¼ �
qz

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ � 1Þ2 þ X 2 þ Y 2

q ;

T xso ¼
qx

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX þ 1Þ2 þ Y 2 þ Z2

q ;

T xsi ¼ �
qx

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX � 1Þ2 þ Y 2 þ Z2

q ;

T zi ¼
Xn¼1
n¼0

bnRnP nðcos hÞ;

T xi ¼
Xn¼1
n¼0

bnRnP nðcosðp=2� hÞÞ

with bn calculated by (15).
The distribution of T in a cross-section Y = 0 were com-

puted from (21) for the case of qx/ka = qz/ka = 1 , that is,
for the orientation of the external field at 45� to the x and z

lattice axes which characterises the ambient field most
deflected with respect to the axially-oriented case studied
in Section 4. This situation is illustrated in Fig. 3 and iso-
therms are plotted in Fig. 4. There is obviously a no-flow
plane Z = X while the plane Z = �X is an isotherm. While
the contours for T = 0, T = ±0.1 and T = ±0.2 are single-
connected, T = ±0.3 and T = ±0.5 are double-connected.
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The latter consist of two isotherms enclosing the two
sources and sinks. With the increase of T these isotherms
become more hemispherical. Curves a–e show ‘‘stream-
lines” plotted by particle tracking according to (20) from
a small sphere of radius R = 0.1 surrounding point M with
a marching time tf = 1.4. Streamlines a and b passed two-
thirds of the whole distance between the source and sink
while trajectories d and e did not reach even the isothermal
surface T = 0 during this time lapse.

To understand better the heat flow topology Fig. 5
shows magnified the zone near the two sources with iso-
therms T = 0.216, 0.218, 0.220. The first two contours are
single-connected and they converge to a critical point F1.
At this point two ‘‘streamlines” coming from the sources
‘‘impinge” on the no-flow plane x = z and the ‘‘velocity”

($T) there is zero. Obviously, for the half of the sphere that
is above the plane z = �x the picture is symmetrical and F2

(Fig. 3) is the second critical point.
Again we note that around the poles the isotherms

approximate to hemispheres and these are the same as if
they were substituted by surfaces maintained at the same
uniform temperature. In this multi-pole situation the values
of hT,1 either side of the pole differ by a small amount so we
take an average value to obtain a value of rhs(T) which was
found to be the same as the value obtained for the single-
pole situation. The conductance then between the two
sources and the two sinks on the sphere is

G0ðrhsÞ ¼ 2Q=2T 0 ¼ Q=T 0 ¼ 2GðrhsÞ ð22Þ
that is, double that found for the previous situation of flow
between only two poles. The macroscopic gradient for the
flow on the assembly of spheres in this case is 2T 0=

ffiffiffi
2
p

a.
The total flow over unit cross-section is 2Q=4

ffiffiffi
2
p

a2 so that
the effective conductivity is

ke ¼ Q=4T 0a ¼ GðrhsÞ=2a ð23Þ
the same value as obtained when the flow is between oppo-
site polar caps. This thus confirms that the orientation of
the gradient causing transport in an assemble of open-
packed spheres does not affect the macroscopic flow which
is therefore isotropic.
6. Close-packed uniform spheres

We now consider the more complicated case of an
assembly of tetrahedral close-packed uniform spheres of
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radius a. In this situation the spheres are arranged in a
repeated layered hexagonal pattern (Fig. 6a), the particles
of one layer falling between those of the next forming
tetrahedral grouping of the spheres with a spacing between
layers of 2

ffiffiffiffiffiffiffiffi
2=3

p
a. The coordination number of an elemen-

tary cell in this case is twelve with each sphere touching
twelve neighbours. The porosity of this packing is
1� p=ð3

ffiffiffi
2
p
Þ. We consider the hatched sphere in Fig. 6a

located at the origin O in the A-layer, all sphere centres
of which are located in the xOy plane. Fig. 6b shows the
plan sections of this sphere in the equatorial plane z = 0
and through the three contact points M1, M2 and M3

located on a radius
ffiffiffiffiffiffiffiffi
1=3

p
a in the plane z ¼

ffiffiffiffiffiffiffiffi
2=3

p
a. Six

neighbours contact the hatched sphere in the plane z = 0,
and there are three contact points on a radius

ffiffiffiffiffiffiffiffi
1=3

p
a in

the plane z ¼ �
ffiffiffiffiffiffiffiffi
2=3

p
a on the layer below that is a reflec-

tion of the B-layer.
We consider the simplest orientation of the ambient

thermal gradient along the z-axis. It implies that the six
neighbouring spheres on the equator in the plane xOy are
thermally neutral. Heat enters the cell from three point
sources in the plain z ¼ �

ffiffiffiffiffiffiffiffi
2=3

p
a and leaves through M1,

M2 and M3 in Fig. 6b. In our spherical coordinates the azi-
muthal angles of M1, M2 and M3 are x1 = 0, x2 = 2/3p
and x3 = 4/3p correspondingly. The latitude coordinate
of all these points is h1�3 ¼ arccos

ffiffiffiffiffiffiffiffi
2=3

p
. Therefore, our

temperature field is symmetrical about the xOy plane and
will retain only one set of spherical harmonics in the expan-
sion below. The three sources supplying heat into the cell
have the same x1,x2,x3 but h1�3 ¼ p� arccos

ffiffiffiffiffiffiffiffi
2=3

p
. If

we assume that the total heat flow through the sphere is
Q then the intensity of each sink and source is q = ±Q/3.

Similar to the case of open packing studied in the previ-
ous sections, we search for a harmonic function that is a
sum of three sources and three sinks of a given form and
one induced temperature Ti which is to be determined from
the solution of the Neumann boundary-value problem:

T ¼
X3

l¼1

T lso þ
X3

l¼1

T lsi þ T i ð24Þ
T lsi ¼ �
q

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ �
ffiffiffiffiffiffiffiffi
2=3

p
Þ2 þ ðX � X lÞ2 þ ðY � Y lÞ2

q ;

T lso ¼
q

4pka
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ þ
ffiffiffiffiffiffiffiffi
2=3

p
Þ2 þ ðX � X lÞ2 þ ðY � Y lÞ2

q
X l ¼ 1=

ffiffiffi
3
p

cos½ðl� 1Þ2p=3�;

Y l ¼ 1=
ffiffiffi
3
p

sin½ðl� 1Þ2p=3�; l ¼ 1; 2; 3

Transforming the singularities in (24) to spherical coordi-
nates for the sinks

T 1si¼�
q

4p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2þ1�2R
ffiffiffiffiffiffiffiffi
2=3

p
cosh�2R

ffiffiffiffiffiffiffiffi
1=3

p
sinhcosx

q
T 2si¼�

q
4p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ1�2R

ffiffiffiffiffiffiffiffi
2=3

p
coshþR

ffiffiffiffiffiffiffiffi
1=3

p
sinhcosx�R=2sinhsinx

q
T 3si¼�

q
4p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ1�2R

ffiffiffiffiffiffiffiffi
2=3

p
coshþR

ffiffiffiffiffiffiffiffi
1=3

p
sinhcosxþR=2sinhsinx

q
ð25Þ

In (24) and (25) we use the dimensionless variables
(X,Y,Z,R) = (x,y,z, r)/a as before. For the three sources
feeding our elementary cell (25) should be changed with
q ? �q and �2R

ffiffiffiffiffiffiffiffi
2=3

p
cos h! 2R

ffiffiffiffiffiffiffiffi
2=3

p
cos h.

Now the induced temperature depends on the longitude,
i.e. our problem is genuinely three dimensional. Conse-
quently, we search Ti in the form of a double series

T i ¼
X1
m¼0

X1
n

bn;mRnP m
n ðcos hÞ cos½mx� ð26Þ

where n P m and P m
n ðcos hÞ are the Legendre functions. On

the sphere surface R = 1 the induced temperature satisfies
the no-flow condition

oT i

oR
¼ �

X3

l¼1

oT lso

oR
�
X3

l¼1

oT lsi

oR
ð27Þ

everywhere except at the six point singularities. In (27) we
calculated the derivatives. For example, for the first term
on the right hand side from (24)



0

1

2

3

0 1 2 3

r/a

z/
a

T = 0.2

0.3

0.4
0.5

0.75
1.0

•

•

•
•

•
•

Fig. 7. Isotherms due to heat flow into a semi-infinite medium with zero
temperature at infinity from a disc of unit radius at unit temperature
(unmarked curves) and from a hemisphere with a radius of 2/p (marked by
dots).
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show values of the conductance of the discs if replaced by hemispheres
with equal surface areas.
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oT lsi

oR
¼ q

16p
ffiffiffi
2
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
ffiffiffiffiffiffiffiffi
2=3

p
cos h�

ffiffiffiffiffiffiffiffi
1=3

p
sin h cos x

q ð28Þ

The expansion coefficients bn,m are determined by dou-
ble integration [24]:

bn;m ¼�
em

n
2nþ 1

4p
ðn�mÞ!
ðnþmÞ!

�
Z 2p

0

dx
Z p

0

P m
n ðcoshÞ sinh

X3

l¼1

oT lso

oR
þ
X3

l¼1

oT lsi

oR

 !
dh

ð29Þ

where e0 = 1 and em = 2 for all other m.
Eq. (29) formally gives us the coefficients required to

obtain the temperature distribution from Eq. (24). How-
ever, we were unable to do the analytical integration for
bn,m and series conversion, and formidable problems which
could not be overcome, were found in attempting to obtain
values by numerical integration.

7. Disc sources and sinks

It is of interest to examine how the analytical solutions
to the conduction problem considering flow between point
sources and sinks on the sphere’s surface that approximate
to hemispherical sources and sinks, compare with results of
the more practical situation of disc sources and sinks that
occur, for example in the form of isothermal liquid menisci
around contact points.

The temperature at a radial distance r resulting from a
point source of strength q emitting into an infinite conduct-
ing material is

T ¼ q=4pkr ð30Þ
so that for a hemispherical source of radius rhs bounded by
an isothermal hemisphere, maintained at a temperature T0,
and a plane passing through the hemisphere’s centre (adia-
batic everywhere but the equatorial circle of the sphere) the
flow of heat is

Qhs ¼ q=2 ¼ 2pkT 0rhs ð31Þ
The corresponding expressions for a flat disc of radius rd

are given by (2) and (3), so that Qhs/Qd = p/2 for rhs = rd.
For Qhs = Qd, rhs/rd = 2/p. The isotherms for this situation
are compared in Fig. 7 for rd = 1.0 when rhs = 2/p. It is
seen that they are in fair agreement for r > 2.0.

For the situation of flow between a hemispherical source
and a hemispherical sink at temperatures T0 and �T0 on
opposite boundaries of a semi-infinite conducting slab with
adiabatic faces, solution of Laplace’s equation by the
method of images results in

Qhs ¼ 2pkT 0rhs=ð1� ðrhs=DÞ logð2ÞÞ ð32Þ

for small values of rhs/D, where 2D is the thickness of the
slab. The corresponding solution of the mixed boundary-
value problem for the flow between two opposite discs at
temperatures T0 and �T0 was given by Kliot–Dashinkii
[26]. It was found there that the solution fitted the equation

Qd ¼ 4kT 0rdð1þ 0:88255Rd þ 0:77889R2
d � 0:07785R3

d

� 0:74408R4
d þ 0:06752R5

d þ 1:40148R6
dÞ ð33Þ

to within 0.2% for Rd < 2/3, where Rd = rd/D.
The relationship between the conductance G = Q/2T0

and the radius of the disc, given in terms of the dimension-
less variables G/kD and rd/D, is shown in Fig. 8 where it is
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compared with Eq. (32) for a hemispherical source that
gives a larger conductance for the same radius.

The complexity of solving the mixed boundary-value
problem, as tackled in [25], was avoided by Das and Sadhal
[27] by considering a constant-flux thermal contact zone in
an infinite domain with a uniform induced flux at infinity.
In an analogous infiltration problem Youngs et al. [28]
also considered a constant-flux approximation to the phys-
ically uniform potential on the disc. For rhs = rd the ratio
Qhs/Qd = p/2 = 1.571 for rhs/D = rd/D = 0, increasing to
1.899 at rhs/D = rd/D = 0.5.

For an open-packed assembly of uniform spheres, the
conductance of a sphere between a small hemispherical
source and a small hemispherical sink on opposite poles
is given from Eqs. (8), (10) and (12), and that between a
small disc source and sink is given from Weber’s formula
as 2krd. The relationships between the conductances for
the two cases and the radius of the source are compared
in Fig. 9, showing the larger conductance for the hemi-
spherical source of the same radius.

In the groundwater situation of seepage from surface
sources to a water-bearing permeable substratum, the sur-
face source is often replaced by an equivalent cylindrical or
spherical source of equal surface area. For the extreme case
of a semi-infinite conducting material corresponding to the
limit of an infinite sphere radius in our lattice, the analysis
of Polya and Szego [29] gives two isoperimetric bounds for
the heat flow Q conducted from a single isothermal surface
at temperature T = T0 to infinity. Although literally ‘‘iso-
perimetric estimates” mean comparisons of figures of equal
perimeter, it is understood these estimates as bounding an
integral physical property (e.g. electrostatic capacity),
which is difficult to measure, by another property (e.g. vol-
ume or area), which can be relatively easily measured.

The Poincare–Faber–Szego [29] theorem states that

Q P 2pkT 0

3V
2p

� �1=3

ð34Þ
0
0

0.5

0.1 0.2
rd/a, rhs/a

G
/k

a
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Fig. 9. The dimensionless conductance G/ka of a sphere for heat flow
between opposite pairs of polar discs and hemispheres plotted against the
dimensionless radius of the discs rd/a and hemispheres rhs/a. The dots
show values of the conductance of the discs if replaced by hemispheres
with equal surface areas.
where V is the volume confined by the surface and an adi-
abatic plane, on which this surface is based. The minimum
of Q for a given V is attained with a hemisphere of radius
rhs so that from (34) Qmin = Qhs = 2pkT0rhs. The lower
bound of Q for an arbitrary isotherm is also based on its
surface area S. It is reported in [30] that Q > Qd, so that
the Weber disc gives minimal heat flow for a given S. Re-
cent developments on isoperimetric inequalities for Q are
discussed by Crasta et al. [30] for unbounded domains or,
assuming shape symmetry of the generating isothermal
source, for semi-infinite domains. It would be challenging
to extend this analysis and to find out how the hemisphere
and disc optimal shapes transform for finite regions such as
in the problem of conduction in spheres between thermal
contact zones.

With a hemispherical source of the same surface area as
the disc in the unbounded situation, that is rhs ¼ rd=

ffiffiffi
2
p

, the
ratio of the flow rates for the same potential difference is

Qhs

Qd

¼ Ghs

Gd

¼ p

2
ffiffiffi
2
p � 1:11 ð35Þ

The good approximation obtained for the conductance of a
disc source and sink using an equivalent hemispherical
source and sink of equal surface area in the bounded situ-
ation of the conduction in a slab and a sphere, is shown in
Figs. 8 and 9.

8. Comparison with numerical results

It is of interest to compare the temperature distribution
in the sphere between polar caps with that given by (8)
for heat flow between isothermal surfaces with the same
0
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Fig. 10. Comparison of isotherms for flow between a polar disc source at
T = 1 and a polar sink at T = �1 of radius rd = 0.314a obtained by finite
difference calculations (unmarked curves) and analytical results for a
hemispherical source at T = 1 and sink at T = �1 of radius rhs = 0.222a

(marked by dots).
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surface area around a point source and sink that approxi-
mate to hemispheres. Such a comparison is shown in
Fig. 10 in which the numerical solution of Youngs [17]
for two polar isothermal caps R = 1, ±p/2 � p/
10 < h < ±p/2 kept at temperatures T = ±1 is compared
with the analytical temperature distribution for a hemi-
spherical source and sink giving the same flow rate. The
numerical solution was obtained using the over-relaxation
finite difference method. The flow rate for this size disc
was Qd/ka = 1.216 which was used in our analytical
sink–source solution. It is seen that even for this large disc
the coincidence of the two temperature distributions are
reasonably close in the central region of the sphere.

9. Discussion

In this study we have considered the steady-state heat
conduction through an assembly of uniformly packed
spheres in order to understand more fully the thermal
regime in porous materials at low liquid contents when
the liquid is held in interstices between the particles at con-
tact points. It is assumed that the conductivity of the gas
phase is small relative to that of the material of the spheres,
and that the liquid lenses act as thermal contacts between
the particles. It is also assumed that there is no heat
exchange due to evaporation and condensation at the
liquid islands that occurs with thermally enhanced vapour
transport particularly at high temperatures [1,31]. For an
open-packed assembly of uniform spheres, this results in
the conductance of a sphere being given by Weber’s for-
mula for flow from a disc into a semi-infinite medium.
However, a full analytical treatment of the flow regime
within the sphere has not been possible for this situation.
Instead we have supposed that the contact points can be
replaced by point sources and sinks surrounded by approx-
imate hemispherical isotherms that replace the disc sources
and sinks in the actual problem. This has allowed an expli-
cit analytical solution to the problem in terms of Legendre
polynomials, giving the three-dimensional pattern of iso-
therms within a sphere and illustrating the complexity of
calculating thermal conductivities of porous materials.

In considerations of the thermal regime in soils and por-
ous materials in general the macroscopic behaviour is
obtained by using an equivalent or effective conductivity
that depends on the liquid content. Our analysis of the tem-
perature distribution in a sphere within a simple cubic
packing of spheres at small liquid contents gives the con-
ductance of a sphere, and hence the effective conductivity,
in terms of the size of the annular water lenses in the inter-
stices between particles relative to the sphere’s radius. The
liquid content w due to the lenses held by surface tension
forces in the interstices between spheres is [32]:

w ¼ 3p
4
ðsec a� 1Þ2 1� p

2
� a

� �
tan a

h i
ð36Þ

where a is the angle subtended at the origin of the sphere by
the circular lens of liquid. For a simple cubic packing the
effective conductivity is given by G/2a, so that with the
conductance G given by Weber’s formula as G = 2krc,
ke = krc/a = ka, and (36) gives the relationship between
the effective conductivity and the liquid content shown in
Fig. 11. The form of this predicted behaviour agrees with
measurements of the effective thermal conductivity of por-
ous materials [7,33,34].

The analysis given here also applies to the conduction of
electricity through spherical particles of a porous materials
and to the flow of fluids through porous aggregates. In the
latter case the flow velocity is of special interest, especially
in the consideration of the movement of solutes [17].
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